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Abstract

The nonlinear dynamics of a slider-crank mechanism with a flexible rod is considered in this study. The
flexible rod is modeled with lumped masses and periodically impacted by an external flexible sphere. The
impact is modeled using a kinematic coefficient of restitution. Nonlinear dynamics tools are applied
to analyze the simulated data captured from the connecting rod of the mechanism. The chaotic behavior of
the system is analyzed. The stability of the motion is studied using the Lyapunov exponents. The
dependence between the Lyapunov exponents and the corresponding angular velocity of the driver link of
the mechanism is investigated.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The effect of impact and flexibility on the dynamic behavior of mechanical systems has been the
subject of numerous investigations. Their practical significance is considerable when high
precision, alignment, clearances are important. Impact is the most common type of dynamic
conditions that gives rise to impulsive force which affects the vibrational characteristic of the
mechanical system.
The impact responses of a multi-body system with lumped mass was studied by Khulief and

Shabana [1]. A study approach in longitudinal collision problems for some simple structural
see front matter r 2005 Elsevier Ltd. All rights reserved.
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systems modeled by a series of rods and rigid elements has been realized by Mioduchowski et al.
[2]. The design and control of some impact systems have been analyzed in Rattan and Brown [3],
the design and dynamics was studied in Rubinstein [4].
The problem of reducing the chaotic response of a simple mechanical system in the continuous

case was studied by Shaw and Rand [5]. Systems with non-ideal elements such as clearance
connections have been found to exhibit chaotic behavior; Moon and Shaw [6], Shaw [7].
Dubowsky and Moening [8] investigated the impact responses in a constrained mechanical system
with flexible components as part of the study of dynamics of mechanical systems with clearances.
Moreover, it has been found experimentally and analytically, that subharmonic and chaotic
vibrations can appear under periodic excitation; Moore and Shaw [9], Shaw et al. [10].
Chaotic behavior in four-bar mechanisms and slider-crank mechanisms with joint clearances

has been studied in Refs. [11,12]. Non-periodic and sensitive to initial conditions responses have
been found in these studies.
Szuminski and Kapitaniak [13] studied the stability regions of periodic trajectories of the

manipulator motion. The responses indicate that chaotic behavior occurs under certain
conditions.
Two methods of formulation (algebraic and differential), were used to develop the necessary

equations to solve impact problems. The coefficient of restitution was used to derive a relation
between the normal components of the approach and departure velocities at the contact point.
The latter method divides the collision period into the compression and restitution phases.
Poisson’s hypothesis defines a kinetic quantity that relates the normal impulses at the contact
point that occur during each phase. The approaches also evolved differently in the treatment of
the motion in the tangential direction at the point of contact.
A comprehensive analysis of the theoretical outcomes that are predicted by each method using

different definitions of the coefficient of restitution can be found in Ref. [14].
Marghitu and Hurmuzlu [14], uses coupled axial and transverse elastic deformations to

study the collisions as well as frictional effects at the impacting point for different impact angles.
The influence of axial waves are not so important in the case of oblique impact. The main
influence for this kind of impact is the transverse vibrations and that is why we neglected the
axial waves.
In this paper the nonlinear dynamics of a slider-crank mechanism with flexible rod and impact

is studied. The flexible link is periodically impacted by the same external elastic sphere. In the
impact moment the sphere is in un-deformed state. The time period between two successive
impacts represents the required time for a complete revolution of the rigid driver link. The flexible
rod is modeled as n successive equal rigid rods connected with torsional springs. The elastic sphere
is modeled as a mechanical system with lumped masses, springs, and rigid massless rods
(Ref. [15]). The kinematic coefficient of restitution is used to study the impact of the system. The
algebraic impact equations with friction and a kinematic coefficient of restitution gives the best
results for our case (Ref. [14]). The generalized equations are formulated and solved for the
motion of the system with periodic impact. Nonlinear dynamics tools are applied to analyze the
simulated data captured from the connecting rod of the mechanism. The stability of the motion is
studied using the Lyapunov exponents. The dependence between the Lyapunov exponents and the
corresponding angular velocity is investigated. This study is different from the others because of
the modeling of the mechanical system and nonlinear analysis.
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2. System model

2.1. Flexible link

For the study of the slider-crank mechanism, the model shown in Fig. 1 is proposed. The planar
mechanism is modeled as a mechanical system with nþ 1 rigid rods. A fixed reference frame xOy

is chosen.
In Fig. 1 the rod A1A2 (the link 1) is rigid. The connecting rod A2Anþ1 is modeled using n

successive equal rigid rods (links 2; 3; . . . ; nþ 1) connected with torsional springs (with spring
constants kt). The rigid slider C is the link nþ 2. The rod 1 has length L1 and is linked to rod 2
with a pin-joint. Each one of the rods 2; 3; . . . ; nþ 1 has the mass m, moment of inertia J and
length l ¼ L2=n. The distance L2 is the distance A2Anþ1 when the flexible link is not deformed. The
rod nþ 1 is linked to the slider nþ 2 with a pin-joint. The spring constants are denoted by kt.
Fig. 1. Mechanical model of the slider-crank mechanism with the rigid link A1A2, the connecting rod A2Anþ1 modeled

using n successive equal rigid rods A2A3, A3A4, A4A5,y, AsAsþ1,y, AnAnþ1, the anglesY1,Y2,Y3,Y4,y,Ys,y,Ynþ1

between the corresponding links and the Ox axis, the relative angles y1, y2, y3, y4,y, ys,y, ynþ1, and the flexible droplet

with the particles P1ðm1Þ, P2ðm2Þ,y,P8ðm8Þ.
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For the slider-crank mechanism shown in Fig. 1, xCi
and yCi

represent the coordinates of the
mass center of the rod i (for i ¼ 1; . . . ; nþ 1), xAi

and yAi
the coordinates of the node point Ai, yi

the relative angle between rod i and rod i þ 1 (for i ¼ 2; . . . ; n), and Yi the absolute angle between
the horizontal direction and rod i (for i ¼ 1; . . . ; nþ 1).
At the beginning of the rotational motion of the slider-crank mechanism, the flexible link is in un-

deformed state, that is, the rods 2; 3; . . . ; nþ 1 are located along a straight line and A2Anþ1 ¼ L2.
One can define the position of each link i ¼ 1; 2; . . . ; nþ 2 using the length L1 of link 1, the

lengths l of each link i ¼ 2; . . . ; nþ 1 and the angles Yi between the links i ¼ 1; . . . ; nþ 1 and the
Ox axis.
The absolute angle Yi of rod i ¼ 2; . . . ; nþ 1 is the summation of the relative angles yj

( j ¼ 2; . . . ; i), as described in Fig. 1

Yi ¼
Xi

j¼2

yj for i ¼ 2; . . . ; nþ 1.

The system of two successive rods i and i þ 1 is shown in Fig. 2.
For the slider-crank mechanism, the position vector of the center of the mass Ci of the link

i ¼ 1; 2; . . . ; nþ 2 is given by rCi
¼ xCi

¼ xCi
iþ yCi

j.
The horizontal and the vertical coordinates of the mass center of the rod i ¼ 2; . . . ; nþ 1 are

xCi
¼ xA2

þ l
Xi

j¼2

1�
dj

i

2

 !
cos Yj; yCi

¼ yA2
� l

Xi

j¼2

1�
dj

i

2

 !
sin Yj,
Fig. 2. System of two successive rods, link i and i þ 1 with Ci and Ciþ1 the corresponding mass center for each link,

with the angles Yiþ1 and yiþ1, and the moments Mi, Miþ1, Miþ2 at the corresponding node Ai, Aiþ1, Aiþ2.
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where

dj
i ¼

1 if i ¼ j

0 if iaj

(
; xA2

¼ L1 cos Y1 and yA2
¼ L1 sin Y1.

The center of the mass position of the link i ¼ nþ 2 (slider C) is given by

xCnþ2
¼ L1 cos Y1 þ l

Xnþ1
j¼2

cos Yj; yCnþ2
¼ L1 sin Y1 � l

Xnþ1
j¼2

sin Yj.

2.2. Equation of motion

The velocity vector of Ci is the derivative with respect to time of the position vector of Ci for
i ¼ 1; 2; . . . ; nþ 2 and is given by vCi

¼ _rCi
¼ _xCi

iþ _yCi
j.

The center of the mass velocity for the link i ¼ 1 of the mechanism is given by

_xC1
¼ �

L1

2
_Y1 sin Y1; _yC1

¼
L1

2
_Y1 cos Y1.

The centers of the mass velocity for the links i ¼ 2; . . . ; nþ 1 are

_xCi
¼ �L1

_Y1 sinY1 � l
Xi

j¼2

1�
dj

i

2

 !
_Yj sin Yj,

_yCi
¼ L1

_Y1 cos Y1 � l
Xi

j¼2

1�
dj

i

2

 !
_Yj cos Yj.

The center of the mass velocity for the link i ¼ nþ 2 (slider C) of the mechanism is given by

_xCnþ2
¼ �L1

_Y1 sinY1 � l
Xnþ1
j¼2

_Yj sinYj _yCnþ2
¼ 0.

The acceleration vector of Ci is the double derivative with respect to time of the position vector of
Ci for i ¼ 1; 2; . . . ; nþ 2, that is, aCi

¼ €rCi
¼ €xCi

iþ €yCi
j.

The centers of the mass acceleration for the link i ¼ 1 is

€xC1
¼ �

L1

2
€Y1 sinY1 �

L1

2
_Y
2

1 cos Y1; €yC1
¼

L1

2
€Y1 cos Y1 �

L1

2
_Y
2

1 sin Y1.

The center of the mass acceleration for the links i ¼ 2; . . . ; nþ 1 are given by

€xCi
¼ � L1

€Y1 sin Y1 � L1
_Y
2

1 cos Y1

� l
Xi

j¼2

1�
dj

i

2

 !
€Yj sin Yj � l

Xi

j¼2

1�
dj

i

2

 !
_Y
2

j cos Yj,
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€yCi
¼ L1

€Y1 cos Y1 � L1
_Y
2

1 sin Y1

� l
Xi

j¼2

1�
dj

i

2

 !
€Yj cos Yj þ l

Xi

j¼2

1�
dj

i

2

 !
_Y
2

j sin Yj.

The center of the mass acceleration for the slider C is given by

€xC3
¼ �L1

€Y1 sin Y1 � L1
_Y
2

1 cos Y1 � l
Xnþ1
j¼2

€Yj sin Yj � l
Xnþ1
j¼2

_Y
2

j cos Yj; €yC3
¼ 0.

One can write the Lagrange differential equation of motion with no impact for the slider-crank
mechanism

d

dt

qT sc

q _qi

� �
�

qT sc

qqi

¼ Qi for i ¼ 1; 2; . . . ; n,

where T sc is the total kinetic energy of the system, Qi are the generalized forces and
qi ¼ Yi; i ¼ 1; . . . ; nþ 1, are the generalized coordinates.
The total kinetic energy is T sc ¼

Pnþ2
i¼1 Ti, where the kinetic energy for each link i ¼

1; 2; . . . ; nþ 2 is Ti ¼
1
2

miv
2
Ci
þ 1

2
ICi

x2
i . The angular velocity vectors of the links i ¼ 1; 2; . . . ; nþ 1

are xi ¼ _Yik.
The elastic moment for the ith (i ¼ 2; . . . ; nÞ link is Mi ¼ �ktyi.
The spring constant is computed using kt ¼ EJ=nl, where E is Young’s modulus [4]. Stoianovici

and Hurmuzlu [16] used a similar discrete model with springs and the model was verified with
experimental data. One can conclude that a system with spring constants calculated with the
previous formula gives accurate results. Dupac et al. [15] calculated the spring constants for more
complicated 3D system.
The generalized forces can be written as

Q1 ¼
Xnþ2
j¼1

qrCj

qY1
�Gj þ

qx1

q _Y1

�M1,

Qi ¼
Xnþ2
j¼1

qrCj

qYi

�Gj þ
qxi

q _Yi

� Mi þMiþ1ð Þ; i ¼ 2; 3; . . . ; nþ 1.

The gravitational forces acting on the links i ¼ 1; 2; . . . ; nþ 1 are Gi ¼ �migj, and the
motor torque that acts on the link 1 is M1 ¼M0ð1� o1=o0Þk ¼M0ð1� _Y1=o0Þk. For
the system of two successive rods i and i þ 1 shown in Fig. 2, Mi represents the moment at
node Ai.
2.3. Mechanical model of impacting elastic sphere

The flexible link is periodically impacted by the same external elastic sphere. In the impact
moment the elastic sphere is considered in un-deformed state. Suppose that the elastic sphere
impacts the flexible link s at the point E. The position vector of the impact point of the elastic
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sphere with the link s is shown in Fig. 1 and takes the form

rE ¼ rA2
þ l

Xs�1
j¼2

cos Yj þ d cos Ys

 !
i� l

Xs�1
j¼2

sin Yj þ d sin Ys

 !
j,

where d represents the distance from the point As to the impact point E and dol.
The time period between two successive impacts represents the required time for a complete

revolution of the rigid driver link. For the study of impact a mechanical model of the impacting
sphere shown in Fig. 1 is proposed.
For the general case, there are q particles, Pi, i ¼ 1; . . . ; q in the system. The total mass of the

elastic sphere is M ¼
Pq

i¼1 mPi
, where mPi

is the mass of the particle Pi.
A particular model, with 8 lumped masses, is considered (refer to Fig. 1). The particles are

connected with linear elastic springs. Rigid massless rods are used for the exterior of the elastic
sphere. There are q rods, connected with rotational joints. Each particle Pi is connected with the
other particles with q� 3 identical springs. In our particular case each particle Pi is connected
with five identical springs as shown in Fig. 1.
Each particle can move along the x and y axes. The numbers of dof of the system with

eight particles is 8. The position vector of the particle Pi is rPi
¼ xPi

iþ yPi
j; for i ¼ 1; 2; . . . ; q

where xPi
is the x-coordinate and yPi

is the y-coordinate of particle Pi in a fixed reference
frame xOy.
One can define the position of each particle Pi; i ¼ 1; . . . ; q, (refer to Fig. 3a), using the length

P1Pq, PiPiþ1, i ¼ 1; 2; . . . ; q� 1, the angle between PiPiþ1 and the Ox axis giðtÞ, and the initial
lengths x1 and x2. One can write

xP1
¼ x1; xPi

¼ x1 þ
Xi�1
j¼1

b cos gj,

yP1
¼ x2; yPi

¼ x2 þ
Xi�1
j¼1

b sin gj, ð1Þ

where i ¼ 1; 2; . . . ; q� 1 and b is the rod length, PiPiþ1 ¼ b ¼ const.
There are q constraint equations in the system

ðxPq
� xP1

Þ
2
þ ðyPq

� yP1
Þ
2
¼ ðPqP1Þ

2
¼ b2 ¼ const,

ðxPiþ1
� xPi

Þ
2
þ ðyPiþ1

� yPi
Þ
2
¼ ðPiPiþ1Þ

2
¼ b2

¼ const, ð2Þ

where i ¼ 1; 2; . . . ; q� 1.
In Eq. (1), x1 and x2 represent the distances from the Oy respectively Oy axis to the particle P1.

Therefore, xP8
and yP8

, computed using Eq. (1), represent the x- and y-coordinates of the particle
P8 at the moment the sphere is dropped. The impacting point of the sphere is considered to be at
the particle P8.
In Fig. 1, him represents the distance covered by the sphere to the impact point and yE is the y-

coordinate of the impact point on the flexible link. The time period Dt, required for the sphere to
cover the distance him is the same as the time required by the mechanism to perform a complete
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Fig. 3. Spring angles and particles position of the sphere: (a) position of Particle Pi is given using the length P1P8,

PiPiþ1, i ¼ 1; 2; . . . ; 7, the angle giðtÞ, and the lengths x1 and x2, (b) spring angles for the configuration Pi�1, Pi and Piþ1

are aij , j ¼ 1; 2; . . . ; 5.
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rotation of the rigid driver link. After a time period Dt, the same sphere in un-deformed state, or
another identical sphere is dropped from the same position.
Before the impact, the sphere is in a free fall and there are no other external forces except the

weight G ¼ �Mgj, where g is the gravitational acceleration.
Using the positions of the particles Pi, i ¼ 1; . . . ; q one can calculate the spring angles ai1,

ai2; . . . ; ain for each particle of the sphere, where aij represent the angles between the Ox axis and
the directions given by PiPj (see Fig. 3b for the particular case q ¼ 8). Then the elastic force due to
each spring is calculated. One can write the expression of the elastic force Feij between the particle
Pi and Pj as

Fe1j ¼ k1jdðP1PjÞ sin a1jiþ k1jdðP1PjÞ cos a1jj; j ¼ 3; . . . ; q� 1;

Feij ¼ kijdðPiPjÞ sin aijiþ kijdðPiPjÞ cos aijj; i ¼ 2; . . . ; q� 1; j ¼ 1; . . . ; q;

Feqj ¼ kqjdðPqPjÞ sin aqjiþ kqjdðPqPjÞ cos aqjj; j ¼ 2; . . . ; q� 2;

where dðPiPjÞ denotes the distance between the particle Pi and Pj and kij represents the elastic
constant of the spring between the particles Pi and Pj. In our particular case kij ¼ ks ¼ const. is
calculated using [17, p. 226]. Because there are no springs between the particles Pi and Pi�1, Pi and
Pi, Pi and Piþ1 one have jai � 1, jai, jai þ 1.
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The total elastic force exerted on a particle is the sum of all elastic forces exerted on the particle.
One can write the expression of the elastic force exerted on each particle Pi as

Fe1 ¼
Xq�1
l¼3

Fe1lj j sin a1l

 !
iþ

Xq�1
l¼3

Fe1lj j cos a1l

 !
j,

Fei ¼
Xq

l¼1

Feilj j sin ail

 !
iþ

Xq

l¼1

Feilj j cos aij

 !
j; for i ¼ 2; . . . ; q� 1,

Feq ¼
Xq�1
l¼3

Feql

�� �� sin aql

 !
iþ

Xq�1
l¼3

Feql

�� �� cos aql

 !
j. ð3Þ

Because there are no springs between the particles Pi and Pi�1, Pi and Pi, Pi and Piþ1 one has
lai � 1, lai, lai þ 1.

2.4. Equations of motion with impact

One can write the impact differential equation of motion for the slider-crank mechanism as

qTt

q _uj

� �
t2

�
qTt

q _uj

� �
t1

¼ Rj,

where Tt is the total kinetic energy of the system defined as the sum of the kinetic energy of slider-
crank mechanism and the kinetic energy of the elastic sphere, ðqTt=q _ujÞ are the generalized
momenta, Rj are the generalized impulses, uj ¼ Yj is the generalized coordinate and ti; i ¼ 1; 2
represents the moments of time, respectively before and after the impact.
Considering R to be the force exerted on the link j by the impacting sphere at the contact point

E during the interval time beginning at t1 and ending at t2, one can define its components Rx and
Ry. One can write Z t2

t1

Rdt ¼ Rxiþ Ryj.

The generalized impulses can be expressed as

Rj ¼
qvE

qqj

Z t2

t1

Rdt.

Because the generalized velocities are known at the time t1, when the sphere comes in contact with
the flexible link s, it is necessary to find the values of the generalized velocities at the time t2, the
instant at which the sphere loses contact with the flexible link.The velocity of the point E of the
link s that comes into contact with the sphere can be expressed as vE ¼ vAs

þ x� rE . The impact
differential equation of motion for the slider-crank mechanism has two unknowns and to solve it
another equation is needed. The second equation for the impact case can be written using
Newton’s coefficient of restitution e.
The velocity of approach can be written as va ¼ ½vE �t1 � ½vsphere�t1 where ½vE �t1 is the rod velocity

at time t1 before the impact and ½vsphere�t1 is the sphere velocity at time t1 before the impact.
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The velocity of separation can be written as vs ¼ ½vE �t2 � ½vsphere�t2 where ½vE �t2 is the rod velocity
at time t2 after the impact and ½vsphere�t2 is the sphere velocity at time t2 after the impact.
Thus, using Newton’s formulation of the coefficient of restitution e, one can write the second

equation of the system as

�eva � n ¼ vs � n,

where n represents the normal to the rod.
3. Nonlinear dynamic analysis

Data obtained from a deterministic system can be classified as either periodic or non-periodic
data [18]. Non-periodic data may correspond to a quasi-periodic, transient or chaotic motion. The
term chaotic is assigned to those problems for which there are no random or unpredictable
variable or parameters, but their time histories have a sensitive dependence on initial conditions.
Thus, the motion is chaotic in the sense of not being predictable when there is a small uncertainty
in the initial conditions. The chaotic motion is characterized by a continuous, broad-band Fourier
spectrum and is possible only in a three-or-more dimensional nonlinear system of differential
equations.
A set of equations represents a random system if any of the variables and/or parameters has a

random character. If the data obtained from an experiment are not repeatable within the bounds
of the experiment error under similar conditions, then the corresponding system can be called a
random system. The data obtained from a random system is called random data.
The space defined by the independent coordinates required to describe a motion is called a state

space (S), and the independent coordinates are called state variables. For a given system of
equations, the coordinates of the state space are well defined. Considering a set of initial
conditions, the time evolution of the system will describe trajectories in the state space. Depending
on the parameters of the system, these trajectories can be divergent or convergent to a final state
generally called attractor. In other words, an attractor is something that ‘‘attracts’’ initial
conditions from a region around it once transients have died out. A more precise definition can be
found in Farmer et al. [19]. Simple attractors can be: a system in equilibrium (point attractor), or
those which decay into stable periodic states (limit cycles), or quasi-periodic motion. The chaotic
evolution is associated with an attractor with the property that the system decays to a final state,
but this state is not periodic and is extremely complex. This attractor is generally called strange
attractor.
Lyapunov exponents provide a measure of the sensitivity of the system to its initial conditions.

They exhibit the rate of divergence or convergence of the nearby trajectories from each other in
state space and are fundamentally used to distinguish the chaotic and non-chaotic (periodic or
quasi-periodic) behavior. Periodic attractors show only negative and zero exponents which
indicate convergence to a predictable motion, whereas there exists at least one positive exponent
for a chaotic system. Therefore, one needs to determine the sign of Lyapunov exponents to
characterize the behavior of a dynamically system. For example, if one considers a 3D state space,
so that there will be an exponent for each dimension, then all negative exponents will indicate the
presence of a fixed point, one zero and the other negative a limit cycle, and one positive a chaotic
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attractor. It should be noted that an attractor exist only when the sum of all the Lyapunov
exponents is negative.
The definition of Lyapunov exponents li can be found in Wolf et al. [20] and the computation

procedure in Kapitaniak [21].
The exponent measures the rate at which system processes create or destroy information. Thus,

the exponents are expressed in bits of information.
We use the nonlinear technique of the Lyapunov exponents to evaluate the stability of the

kinematic chain. One of the advantage of using this technique is the analysis could be performed
by using experimentally acquired system states without having to build the equations of motion.
The Lyapunov exponents provided a useful characterization of a given analytical or experimental
data set, and are of importance to both the theoretical and the experimental understanding of
dynamical systems.
4. Results

In this section, the dynamic evolution of the system is investigated. This consists in
interconnected rigid and flexible components examined for different angular velocities. The
slider-crank mechanism is driven by a prescribed torque profile, and periodically impacted, so that
the motion is not known a priori, thus the differential equation of motion have been derived.
Numerical simulation for the slider-crank mechanism were performed for a particular system

with a flexible link.
The flexible link has n ¼ 7 successive equal rigid rods, each with the length 0:045m. The link 1

has the length 0:12m. For the rods, two kind of materials are chosen, steel and aluminum. The
mass of the sphere is m ¼ 0:1kg. The coefficient of restitution is e ¼ 0:5.
For the sphere simulations presented here an eight particle approximation ðq ¼ 8Þ was used.

Simulations involving 9, 10, 11, 12 and 13 particles were performed and no perceptible difference
was found with respect to the dynamic behavior. Thus q ¼ 8 is considered adequate for accurately
describing the elastic motion for the simulation reported in this paper.
For the mechanism simulations, a seven rigid rods approximation (n ¼ 7 rigid links for the

elastic rod) was used. Simulations involving 9, 11 and 15 rods were performed and no perceptible
difference was found with respect to the dynamic behavior. Thus n ¼ 7 was considered adequate
for accurately describing the elastic motion of the mechanism for the simulation reported in this
paper (Ref. [22]).
For the slider-crank mechanism, the horizontal coordinate xC5

, of the mass center of link 5 was
analyzed. The motion (trajectory of the mass center of link 5) on x-axis of the slider-crank
mechanism without impacts was shown (refer to Fig. 4a). In the same figure, the trajectory of the
mass center of link 5 with impact was presented. The mechanism changes its trajectory after
the moment of impact at t ¼ 0:004 s. The thicker curve in the figure is related to the trajectory of
the mechanism with impact.
The trajectories of the sphere with and without impact are presented in Fig. 4b, and the

trajectory of the vertical coordinate yGs
, of the mass center of the sphere was drawn. The thicker

curve in the figure is related to the trajectory of the sphere with impact.
Next, the vertical coordinate of the mass center of the link 5 is analyzed.
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Fig. 4. Trajectory of the mass center of the sphere and slider-crank mechanism: (a) of the Link 5 of the slider-crank

mechanism with and without impact, (b) of the vertical coordinate of the mass center of the sphere with and without

impact.

Fig. 5. 3D phase space generated by the system evolution for aluminum specimen for different angular velocities

o01 ¼ 25, o02 ¼ 30 and o03 ¼ 35 rad=s.
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Fig. 5 shows the 3D phase space generated by the system evolution for aluminum for different
angular velocities o01 ¼ 25, o02 ¼ 30 and o03 ¼ 35 rad=s. Fig. 6 shows the 3D phase space
generated by the system evolution for steel at the same angular velocities o01 ¼ 25, o02 ¼ 30 and
o03 ¼ 35 rad=s. The trajectory shown in Figs. 5 and 6 for each particular specimen, steel or
aluminum, are associated with the motion around the attractor and shows the classical
characteristics of chaotic motion. It is visible in all cases that the phase trajectory of the link 5
vibration does not close for each revolution.
The type of dynamical evolution of the system is best shown by the sign of the largest Lyapunov

exponent.
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Fig. 6. 3D phase space generated by the system evolution for steel specimen for the angular velocities o01 ¼ 25,

o02 ¼ 30 and o03 ¼ 35 rad=s.

Fig. 7. Local Lyapunov exponents: (a) for the aluminum specimen, (b) for steel specimen.
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Fig. 7a shows all computed Lyapunov exponents for aluminum when o0 ¼ 35 rad=s. Fig. 7b
shows all computed Lyapunov exponents for steel at the same angular velocity o0 ¼ 35 rad=s.
For both cases, aluminum and steel, one Lyapunov exponent is zero, thus, the systems can be

described by a dynamical system of differential equations. The sign of the largest Lyapunov
exponents is positive for all data (aluminum or steel specimens), denoting the exponential
separation of nearby trajectories as time evolves, that is, the system is characterized by chaotic
behavior. So, one can conclude at this point the chaotic behavior of each system.
For aluminum, the largest Lyapunov exponents lia have been computed for different angular

velocities o01 ¼ 25, o02 ¼ 30 and o03 ¼ 35 rad=s. The values of the largest Lyapunov exponents
are l1s ¼ 0:4 to the corresponding o01 ¼ 25 rad=s, l2s ¼ 0:67 to the corresponding o02 ¼ 30 rad=s
and l3s ¼ 0:91 to the corresponding o03 ¼ 35 rad=s.
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Fig. 8. Largest Lyapunov exponents for aluminum specimen l1a, l2a, l3a and for steel specimen l1s, l2s, l3s.
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For steel, the largest Lyapunov exponents lis have been computed for the same angular
velocities o01, o02 and o03 as in the aluminum case. The values of the largest Lyapunov exponents
are l1a ¼ 0:36 to the corresponding o01 ¼ 25 rad=s, l2a ¼ 0:54 to the corresponding o02 ¼

30 rad=s and l3a ¼ 0:74 to the corresponding o03 ¼ 35 rad=s.
In Fig. 8 the largest Lyapunov exponents l1a, l2a, l3a for the aluminum case and l1s, l2s, l3s for

the steel case with respect to the angular velocities o01 ¼ 25, o02 ¼ 30 and o03 ¼ 35 rad=s are
shown. One can see an increase in values of Lyapunov exponents as the angular velocity increases.
These increase appear also in steel or aluminum case. Also, one can observe that for the same
angular velocity the Lyapunov exponents for aluminum are greater than the Lyapunov exponents
for steel, that is, lia4lis.
5. Conclusions

In this paper the motion of a slider-crank mechanism with impact and a flexible component was
analyzed. Using Lyapunov exponents the stability of the system is investigated and one can
observe that the system is chaotic. The existence of chaotic vibrations is confirmed in both cases,
steel or aluminum. One can see an increase in values of Lyapunov exponents as the angular
velocity increases, that is, when o014o02 ) l14l2. Also one can observe that for the same
angular velocity o0i ¼const.) lia4lis. Furthermore, experimental tests with different materials
are needed in order to generalize the results reported in the present paper.
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